侵权投诉
当前位置:

OFweek传感器网

光学传感

正文

LiDAR技术能否成就自动驾驶的高可靠性?

导读: LiDAR在ADAS(高级驾驶辅助系统)和自动驾驶技术发展中的重要性不言而喻,原始设备制造厂商和供应商纷纷对专业的LiDAR厂商进行重大投资。

据麦姆斯咨询报道,自20世纪60年代以来,激光雷达(以下简称LiDAR)就已经成为一种成熟技术。早期应用包括建筑和考古用途的测绘,美国宇航局(NASA)第九次载人登月任务阿波罗15号(Apollo 15)也使用了LiDAR技术来绘制月球表面图。但是直到千禧年之初,LiDAR才引起汽车行业的关注。LiDAR具有连续和高精度3D扫描的潜力,对参与早期自动驾驶汽车开发的厂商而言具有很大的吸引力。

自此之后,该技术得到改进,顶部安装的LiDAR已经成为Waymo等公司在公共道路上进行自动驾驶测试的常规“模样”。但是LiDAR系统还没有进入大规模量产,单个单元的成本为75000美元。成本问题意味着关于LiDAR是否能在汽车行业占有一席之地的争论仍将继续。持续冷落这项技术的一个重要发声来自于特斯拉(Tesla)的首席执行官Elon Musk,2015年的新闻发布会上,他认为LiDAR非必要技术,2017年继续声称特斯拉可以在两年内通过更便宜的传感器组合,例如雷达和摄像头,实现L5级自动驾驶。

LiDAR技术能否成就自动驾驶的高可靠性?

可以预见的是,特斯拉首席执行官的意见已经引起一些人的强烈反对,包括通用汽车公司(GM)自动驾驶汽车集成总监Scott Miller在2017年末表示“特斯拉首席执行官对自动驾驶的说法是‘一派胡言’”。

LiDAR对自动驾驶至关重要

LiDAR技术开发公司Luminar Technologies的联合创始人兼首席技术官Jason Eichenholz表示,对LiDAR技术的争论将告一段落。Eichenholz强调道,“真正的自动驾驶绝对需要LiDAR技术”,Luminar公司的LiDAR技术被证实将出现在丰田(Toyota)平台2.1版和3.0版自动驾驶测试车上。Eichenholz提到,“一旦自动驾驶汽车开始脱离封闭道路并进入真实道路,它们就必须拥有‘5个9’(99.999%)的可靠性。因此LiDAR技术是必不可少的。摄像头和雷达面对现实驾驶场景的边界情况,缺乏及时做出反应所需的性能,汽车周围的场景需要像人眼一样能够以3D模式进行观察。”

Eichenholz所说的边界情况指的是在道路上可能自发产生的意外情况,如从两辆停放的汽车之间走出一个小孩,因道路工程关闭一条车道,一辆半挂车喷漆成与驾驶员前方天空一样的颜色,2D扫描设备可能无法正确解读上述情况。适应能力使得人类非常适合处理这些意外。机器则不可一概而论。

Eichenholz继续说道,“如果一辆车停在路边,是否停在三英尺的行车道内呢?如果是本人驾驶,我们可以看到并做出调整。LiDAR技术所提供的高保真愿景意味着自动驾驶汽车也能够了解周围的世界,并提前做出决定。”

大陆集团(Continental)高分辨率Flash LiDAR部门的业务开发和销售主管Tom Laux表示,大陆集团的供应商无法确定该行业是否需要LiDAR,很显然,通过单一的感知功能无法实现5个9的性能。他建议“应该将3种传感器组合在一起,像摄像头这样的2D传感器可以对信号颜色、交通标志和车道标记进行成像。雷达来确定速度,LiDAR以更精准的方式提供准确的角分辨率和3D成像。”

性价比的重要性

但是如何将成本降低到原始设备制造厂商(OEMs)可以认真考虑的水平呢?答案在于固态解决方案,Laux将其简单定义为没有移动部件。通过将所有机械部件集成到微芯片上来降低成本,基于制造环境的规模,使用半导体基础制造技术构建出的任何事物都将遵守相同的成本曲线。他说道,“换一种说法就是,你生产的越多,随着时间的推移,这些东西就会变得越便宜。”另一大关键的好处就是去除机械部件,意味着将获得更好的可靠性。

但是,Eichenholz也指出我们不应该过分强调“固态”这一概念,最为重要的是供应商能够提供可以达到性能要求,并进行量产的可扩展系统。Laux赞同这一观点,并表示只有达到性能要求才能开始缩减成本。Luminar的系统就是自底向上构建的。这样做有助于公司解决在开始时所遇到的众多挑战,包括扫描范围问题。

Laux表示,“该系统的关键性能目标之一是检测反射率仅10%的目标,例如深色物体:轮胎或是200米开外一个穿黑色连帽衫的人。这个数字是我们从每位客户那里收集到的,检测时间大约相当于7秒。”Laux认为系统所能检测到的物体范围介于200到250米之间。此外,系统必须能够抵御来自天气和其它LiDAR系统的外部干扰。为了在成本范围内满足性能要求,供应商必须不断创新。

自底向上构建帮助Luminar进行了基础架构的变更,将激光波长从905纳米增长到1550纳米,使功率增加到十倍,同时保持在人眼安全范围内。Eichenholz说,最初的905纳米是在LiDAR系统中使用硅接收器的结果。以前估算使用铟镓砷(以下简称InGaAs)作为替代品太过昂贵,这是一个错误的假设。

1  2  下一页>  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: