侵权投诉
订阅
纠错
加入自媒体

人工智能加持下的波束成形雷达可能是自动驾驶的制胜法宝

2019-02-22 11:54
来源: 微迷网

自动驾驶汽车中的人工智能(AI)应用已经很常见,从能够识别行人并阅读交通标志的深度卷积神经网络,到可以让Waymo自动驾驶汽车安全通过交叉路口的算法,先进的机器学习无处不在。相比之下,令人诧异的是目前的传感器仍然不够智能。

传感器的短板

不过,不要误解我的意思,目前的传感器通过传统方法已经能够提供惊人的性能。高分辨率数字摄像头正在变得越来越便宜,并且在尺寸和可靠性方面也能够满足工程师的理想要求。雷达的探测范围和分辨率也一直在提高。激光雷达(LiDAR)虽然价格昂贵,但却提供了令人难以置信的3D环境感知能力,解锁了各种自动驾驶应用。

但是,所有这些传感器,通讯大多是单向的。一旦摄像头定好位,它就会每33毫秒发送一张它所指向的环境图片,直到被命令停止运行。顶级的机械旋转LiDAR也是按预设方向持续捕捉并传输数据流。目前的雷达也与此类似。

人工智能加持下的波束成形雷达可能是自动驾驶的制胜法宝

对比人类驾驶员“捕捉”周围环境的方式,人类会不时扫描道路,寻找可能进入道路的物体。当接近十字路口时,人类可能会向每个方向查看,观察是否可以安全通过。人类如果观察到正在路边奔跑的孩子,可能会把注意力集中在他们身上,以防突发情况需要紧急停车。真正智能的自动驾驶汽车不仅需要能够从预设的扫描模式中获取信息,还要能够将其信息收集重点“聚焦”在环境中最相关的区域。

虽然在传感器中嵌入人工智能本身具有挑战,但其潜在的效益是巨大的。用最高效的方式收集数据,可以在降低计算量和材料成本的同时提高性能,这是Level 4级和5级自动驾驶走向大众的迫切需求。

机器学习

机器学习和人工神经网络的研究,始终要求与人类的认知进行比较。因此,近年一种以人类认知经验为核心的概念正受到越来越多的关注。据麦姆斯咨询报道,近期一篇关于“残差注意力网络(Residual Attention Network)”的论文,采用堆叠残差注意力模块在标准物体识别基准上实现了最先进的性能。

这一突破性研究真正令人惊叹的是,他们的网络层数不到下一代最佳方案的一半。传统的卷积神经网络都是平等地对待每个像素,无论其包含什么内容。相比之下,在这个残差注意力网络中,每个注意力模块都执行两项任务:决定看哪里,以及那里有什么。这种架构可使网络只关注每张图像中最重要的元素,使其相比竞争方案更具优势。

“Show, Attend and Tell”算法

“Show, Attend and Tell”算法展示了另一种非常令人印象深刻的方案。以前的工作都是只关注图像一次,然后使用最后一层的全连接层得到图像最有用的信息。这样的缺点就是在描述图像的时候丢失了很多有用的信息。

这项研究中所提取的这些矢量来自于低级(low-level)的卷积层,这使得解码器可以通过选择所有特征向量的子集来选择性地聚焦于图像的某些部分,也就是将注意力(Attention)机制嵌入。Attention机制可以学习到类似于人类注意力一样的信息。

网络神经元

还有一些研究使用人工神经网络来选择何时使用哪个传感器。在近期发表的一项研究中,研究人员为他们被称为“传感器转换注意网络”开发了一种架构:将不同类型的传感器引入一个共同架构的一种神经网络系统。这项研究探讨了他们的算法能够评估来自每个传感器的噪声水平,并忽略它确定为不可靠的传感器。

举例来说,比如从电影中转录语音。如果音频非常清晰但视频很模糊,则可以完全忽略视频,通过将音频馈送到长短期记忆神经网络(LSTM)来获得最佳性能;如果音频严重失真,但是视频清晰,则可以通过使用卷积神经网络尝试读取演讲者的嘴唇来提高性能。获悉哪种传感更可靠,是建立像人类一样注意力算法的重要一步。

1  2  下一页>  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号