汽车LiDAR的激光器和光电探测器选用建议
据麦姆斯咨询报道,激光雷达(LiDAR)与其它传感器技术(摄像头、雷达和超声波)的相互竞争增加了对传感器融合的需求,同时也要求对光电探测器、光源和MEMS微镜的仔细甄选。
随着传感器技术、成像技术、雷达、LiDAR、电子设备和人工智能技术的进步,数十种先进驾驶辅助系统(ADAS)功能已得以实现,包括防撞、盲点监测、车道偏离报警和停车辅助。通过传感器融合同步此类系统的运行,以允许全自动驾驶车辆或无人驾驶车辆对周围环境检测,并警告驾驶员潜在的道路危险,甚至可以采取独立于驾驶员的规避动作来避免碰撞。
自动驾驶汽车还必须能在高速情况下区分并识别前方物体。使用距离判断技术,这些自动驾驶汽车必须快速构建出约100米远道路的3D地图,并能在250米远的距离上创建出高角分辨率的图像。如果驾驶员不在场,汽车人工智能必须做出最优决策。
此任务的几种基本方法之一是,测量能量脉冲从自动驾驶汽车发出到目标再返回车辆的往返飞行时间(ToF)。当知道脉冲通过空气的速度时,就可以计算出反射点的距离。这个脉冲可以是超声波(声纳),也可以是无线电波(雷达)或光(LiDAR)。
这三种ToF技术,想拥有更高的角分辨率图像,LiDAR是最好的选择,这是因为LiDAR图像的衍射(光束散度)更小,对邻近物体识别能力比雷达更优秀(见图1)。对于高速情况下需要足够时间来应对如迎头相撞等潜在危险,更高的角分辨率尤为重要。
激光源的选择
在ToF LiDAR中,激光发出持续时间为τ的光脉冲,在发射的瞬间激活计时电路内部时钟(见图2)。从目标反射的光脉冲到达光电探测器时,会产生一种使时钟失效的输出电信号。这种电子测量往返ToF Δt 可计算出目标到反射点的距离R。
若现实中激光和光电探测器位于同一位置,其距离R是由以下两因素影响:
c为光在真空中的速度,n为传播介质的折射率(空气中折射率接近1)。这两个因素影响着距离分辨率ΔR:若激光点的直径大于要解析的目标大小,则测量Δt和脉冲的空间宽度w(w = cτ)的不确定性为δΔt。
图片新闻
最新活动更多
-
即日-11.30免费预约申请>>> 燧石技术-红外热成像系列产品试用活动
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
精彩回顾立即查看>> 2024中国国际工业博览会维科网·激光VIP企业展台直播
-
精彩回顾立即查看>> 2024先进激光技术博览展
-
精彩回顾立即查看>> 2024(第五届)全球数字经济产业大会暨展览会
-
精彩回顾立即查看>> 【线下会议】全数会2024电子元器件展览会
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论