当前位置:
OFweek 传感器网
> 正文
深度解析自动驾驶的未来:多传感器融合
2017-09-05 11:50
来源:
盖世汽车
三种传感器融合体系结构的对比
因为多传感器的使用会使需要处理的信息量大增,这其中甚至有相互矛盾的信息,如何保证系统快速地处理数据,过滤无用、错误信息,从而保证系统最终做出及时正确的决策十分关键。
目前多传感器融合的理论方法有贝叶斯准则法、卡尔曼滤波法、D-S证据理论法、模糊集理论法、人工神经网络法等。
从我们上面的分析可看出,多传感器融合在硬件层面并不难实现,重点和难点都在算法上。多传感器融合软硬件难以分离,但算法是重点和难点,拥有很高的技术壁垒,因此算法将占据价值链的主要部分。
结语
在自动驾驶的浪潮下,自主品牌车企对智能化、电子化的需求比合资车企更加强劲,随之而来的便是自主一二级零部件供应商在该领域的机会,过去几年,零部件行业也在持续布局等待市场开启。
相对于控制层和执行层多被互联网巨头、整车厂及Tier 1所控制,传感器层的零部件供应商较为分散且门槛相对低一些,进入周期相对短一些。传感层仍然是国内企业进入自动驾驶产业最容易的切入点。

声明:
本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
图片新闻
最新活动更多
-
3月27日立即报名>> 【工程师系列】汽车电子技术在线大会
-
7.30-8.1火热报名中>> 全数会2025(第六届)机器人及智能工厂展
-
7月30-31日报名参会>>> 全数会2025中国激光产业高质量发展峰会
-
免费参会立即报名>> 7月30日- 8月1日 2025全数会工业芯片与传感仪表展
-
精彩回顾立即查看>> 【在线会议】从直流到高频,材料电特性参数的全面表征与测量
-
精彩回顾立即查看>> 【在线会议】AI加速卡中村田元器件产品的技术创新探讨
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论